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Abstract
It is demonstrated that a bound rapidly oscillating potential typically traps
particles even if its time average vanishes. In particular, it is shown that in
one dimension there is always a resonance state and its energy and lifetime are
calculated from an effective time-independent potential. This is the quantum
analogue of the classical Kapitza pendulum. This work may be relevant for
the manipulation of cold atoms and for the suppression of photo-ionization by
electromagnetic fields.

PACS numbers: 32.80.Pj, 03.65.Xp, 03.65.Nk, 42.50.Hz

The effect of trapping and cooling of particles, specifically atoms, is of great interest due to
the applicability in fields such as atom optics, precision spectroscopy, optical communication,
and in the developing field of quantum computing [1].

In this letter we will demonstrate that typically a rapidly oscillating, smooth, bounded
one-dimensional potential with vanishing average leads to trapping of particles. This sounds
counter intuitive since one may expect that because of the high energy of the photons the
particles will rapidly obtain energy that will be sufficient to overcome any potential barrier.
It will be demonstrated that this is not the case and the situation is similar to that found in
classical mechanics, where stabilization by a rapidly oscillating potential with vanishing mean
is possible.

Trapping of a classical particle can be achieved by introducing an external rapid time
periodic potential V (q, t) = V0(q) + V1(q, t) [2, 3]. The classical particle is trapped by an
effective time-independent potential which is approximately given by

Veff(q) = V0(q) + F 2(q)/(2mω2) (1)

where F 2(q) is the time average of the square of the force F = −∂V1(q, t)/∂q , which
is exerted by the oscillating field V1(q, t) = V1(q, t + T ), where T = 2π/ω and its time
average V̄ 1 vanishes. In this case the trapping is obtained when the frequency of the external
oscillatory field, ω, is much larger than the frequency � of the bound motion or the inverse

0305-4470/03/250409+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK L409

http://stacks.iop.org/ja/36/L409


L410 Letter to the Editor

of the shortest characteristic time scale of the motion, which for this comparison plays the
role of �. Note that the motion can be bounded even in the absence of V0, namely when
the time average of the potential vanishes. Such a stabilization was proposed by Kapitza
for a pendulum with a vibrating point of suspension [3]. In such a situation the pendulum
can perform stable vibrations around the point where it points upwards, which is unstable
in the absence of the vibrations of the point of suspension. It was generalized to arbitrary
oscillating potentials in [2]. This is also the principle of operation of the Paul trap [4] where
V1(q, t) and the resulting Veff(q) are harmonic. In this letter it will be argued that for high
frequency the action of the potential V1 on quantum particles can be approximated by the
action of the time-independent potential Veff(q) also beyond the validity of the semiclassical
approximation. In particular, if Veff(q) has a minimum at q = 0, and maxima at ±q̄max and
it vanishes in the limit |q| → ∞, the classical particle will be bounded in a region around
q = 0 if its energy is lower than Veff(q̄max), while under these conditions the quantum particle
will exhibit some long lived resonances. The potential Veff(q) that describes the classical
dynamics for the rapidly oscillating potential V1(q, t) will be demonstrated to also describe
the quantum dynamics. For simplicity a one-dimensional notation is used in most of the letter,
but generalization to higher dimensions is straightforward.

This problem is relevant for the modelling of manipulation of cold atoms by
electromagnetic fields. Resonant coupling between a field and an atom results in a potential,
proportional to the intensity, on the centre of mass of the atom [5]. This potential may oscillate
with a frequency that is much larger than the frequencies related to the dynamics of the centre
of mass (but much lower than the frequency of the light of the laser). This is the way the atoms
are trapped in an effective light billiard [6, 7].

The model studied here may also be relevant for the analysis of the electronic motion of
atoms and molecules in the presence of strong laser fields. In this case the potential experienced
by the electrons is a result of the combined effect of the internal interactions in the atom and
of the external field. For example, the Kramers–Henneberger (KH) transformation [8] results
in a potential of the form V (q, t) = Vatom(q − ẑα0 cos ωt), where Vatom is the potential in the
absence of an external field, and α0 is a constant.

For the sake of clarity we briefly sketch below the quantum derivation that will lead
to an effective time-independent potential. It employs a unitary transformation of the time-
dependent Schrödinger equation which provides an alternative transformed time periodic
potential, V alt(q, t) [9]. For a Hamiltonian of the form

H(q, t) = H0 + V1(q, t) (2)

with

H0 = p̂2
q

2m
+ V0(q) (3)

where the average over a period of V1 vanishes, the unitary transformation

Û=e− i
h̄

∫ t
V1(q,t ′) dt ′ (4)

will result in a Schrödinger equation with a Hamiltonian where the potential is given by
V0 + V alt with

V alt(q, t) = (p̂q − A(q, t))2

2m
− p̂2

q

2m
(5)

where

A(q, t) =
∫ t ∂V1(q, t ′)

∂q
dt ′. (6)
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Averaging over a period results in an effective potential

Veff(q) = V0(q) +
1

T

∫ T

0
V alt(q, t) dt = V0(q) +

1

2mω2

∑
n �=0

fn(q)f−n(q)

n2
(7)

where fn(q) is the nth Fourier component of the force:

fn(q) = 1

T

∫ T

0
e−inωt ∂V1(q, t)

∂q
dt . (8)

In our calculations we use

Heff = p̂2
q

2m
+ Veff(q) (9)

rather than H0 as the unperturbed Hamiltonian where the perturbation is V alt(q, t) − Veff(q).
This perturbation will be ignored in the calculations presented here. In the studies of the photo-
induced dynamics of atoms in strong laser fields the time average over the time-dependent
Hamiltonian in the KH representation [8], H0, has been used as the unperturbed Hamiltonian
(see, for example, [10] and references therein). Our modified time-independent zero-order
Hamiltonian depends explicitly on the maximum field amplitude and the frequency. The
Hamiltonian Heff turns out to be the leading part in a systematic expansion of the Floquet
operator in powers of ω−1. The corrections are of order ω−4. This expansion is rather involved
and will be given elsewhere [11]. Usually when the interaction of the system with the laser
field is described within the framework of the acceleration representation (known as the KH
representation), V0(q) is taken as the unperturbed part. The additional term included here
compared to previous work is Veff(q) − V0(q). This correction potential term describes the
average kinetic energy of the rapid oscillations of the particle in the oscillatory field. It acts
as an effective potential energy when the motion of the ‘slow’ coordinate of the particle is
studied. This term is just the second term of (1) which is presented in the framework of
classical mechanics in [2]. The effective potential (7) was obtained in the quantum framework
and its classical limit is (1).

The nature of quantum dynamics depends on the shape of the effective potential (7).
If its general form is similar to that of figure 2, a classical particle will be trapped, if its
energy is smaller than the maxima, while the quantum particle is expected to tunnel out. Its
temporary trapping is associated with a metastable solution of the time-dependent Schrödinger
equation with the Hamiltonian (2). For time-independent Hamiltonians (such as Heff(q))
these metastable states are the complex poles of the scattering matrix or of (E − Heff)

−1

and are known as resonance states [12]. For periodically time-dependent Hamiltonians
the resonances are associated with the complex poles of (E − Hf )−1, where the Floquet
operator is Hf (q, t) = −ih̄ ∂

∂t
+ H(q, t) [13, 14]. For time periodic potentials, as in our

case, the resonances are the quasi-energy (QE) solutions of the Floquet eigenvalue problem,
which are obtained when outgoing boundary conditions are imposed. These resonance
solutions are not in the Hilbert space. By carrying out a similarity transformation which
is known as the complex scaling transformation the resonance solutions become part of the
generalized Hilbert space and become square integrable (see, for example, [15]). We can
summarize this discussion by stating that the driven quantum particle is temporarily trapped
in a �(qe−iθ , t) = exp(−iEQEt/h̄)�

QE
θ (q, t) state, where EQE = E − i

2	 and 	 is the rate
of decay of the quantum particle, while eiθ parametrizes the complex rotation. The lifetime
of the trapped quantum particle is defined as usual as τl = h̄/	. The complex eigenfunction
and eigenvalue of the complex scaled Floquet operator Hf are �

QE
θ (q, t) and EQE = E − i

2	,
respectively. We expect that for high frequency these will be approximated by ÛφE and E ,
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Figure 1. An illustration of a particle scattered by an oscillating Gaussian of (10) with V0 = 9 and
β = 0.02 (in ‘atomic units’ h̄ = m = e = 1).

where E and φE are the resonance state and the corresponding complex scaled energy state of
Heff (9), and Û is given by (4).

The model Hamiltonian we have chosen for the demonstration of the application of the
theory developed here to the quantum trapping phenomenon is

H(q, t) = − h̄2

2m

∂2

∂q2
+ V0 e−βq2

cos(ωt). (10)

Here the free particle interacts with an external time-dependent field which is a Gaussian
oscillating up and down periodically as shown in figure 1. The effective time-independent
potential (7)

Veff(q) = V 2
0 β2

mω2
q2 e−2βq2

(11)

is plotted in figure 2. For this specific model Hamiltonian the periodic time-dependent
potential V (q, t) is described as a simple product of two functions where one is a coordinate-
dependent function whereas the second is time dependent. However, this form is not essential
for the conclusions of the paper. As one can see from figure 2 the time-averaged effective
potential supports two potential barriers separated by a potential well. The quantum particle
is temporarily trapped inside this potential well in definite resonance states. The resonance
energy, E, and width, 	 (i.e. inverse lifetime), of the ground state were calculated by solving
the eigenvalue problem Hf (qc, t)�

QE(qc, t) = (
E − i

2	
)
�(qc, t) where qc = q exp(iθ), by

combining the (t, t ′) and the complex scaling methods [13, 15, 16].
For a potential of the form (11), namely a one-dimensional potential that is positive and

vanishes in the limit |q| → ∞, there is always at least one resonance below the maximum
of the potential. The reason is that in one dimension for a negative potential that vanishes at
infinity there is always a bound state [17–19]. With the help of analytic continuation one can
show that the existence of a bound state for a static potential V implies existence of a low
energy resonance for −V . The sufficient condition for such a continuation is that V (q) falls
off exponentially (or faster) with q (for the precise statement see [18]). A general argument
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Figure 2. Effective time-independent potential of equation (11) for the parameters of figure 1 and
with ω = 1.5.
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Figure 3. The energy position of the lowest resonance for the potentials of figures 1 and 2 versus
the driving frequency ω. The solid line is a result of the exact calculation for (10) and the dashed
line for the effective potential of equation (11).

and specific examples are presented in section 2.2.2 of [15]. Note that this phenomenon
might be affected by the presence of an additional time-independent potential. According
to the transformations performed in this letter, (2)–(9), which were performed under quite
general conditions, it implies existence of a resonance for the time-dependent Hamiltonian
(10). Such a resonance was calculated directly for the time-dependent Hamiltonian (10)
and for the corresponding time-independent Hamiltonian with the effective potential (11).
The comparison is presented in figures 3 and 4. In our calculations we used ‘atomic units’,
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Figure 4. Same as figure 3 for the resonance width.

i.e. m = h̄ = e = 1, where m is the mass of the particle considered rather than the mass
of the electron. In these units the potential parameters are β = 0.02 and V0 = 9. The
lowest resonance (smallest real part) EQE

0 = E0 − i	0/2 is presented in these figures. Good
agreement between the predictions of (10) and (11) is found for 1 < ω. This frequency
range should be compared to �, the characteristic frequency of the bound motion that satisfies
2π/� = ∮ dq√

2(E0−Veff)/m
, where the integral is over the closed cycle of the classical motion.

The resonance position E0 and Veff depend on ω. For ω = 2 and ω = 1 one finds � = 0.10
and � = 0.23, respectively. Note that even for large ω the resonance does not become very
wide and the growth of 	0 with ω is slower than linear. There is a minimum in the width 	0

and the approximation is quite reasonable for frequencies larger than the frequency where the
minimum is found.

It is instructive to notice that the agreement between the predictions of (10) and (11) was
found here in a regime that is not semiclassical. For this purpose we calculated R = Lctp/λ,
where Lctp is the distance between the classical turning points for a trajectory trapped in the
well and λ = h̄/

√
2mE0 is the de-Broglie wavelength. Applicability of the semiclassical

approximation requires R � 1 while for the results presented here we find R < 0.32.
Therefore the behaviour in the regime studied here is not semiclassical.

In this work we demonstrated that trapping by a rapidly oscillating potential with a bound
amplitude can be approximated by trapping in a static potential that is calculated by averaging
the transformed potential V alt(q, t) over time. It is superior to the averaging of V (q, t)

over time, which is traditionally performed in the exploration of the dynamics of atoms in
strong laser fields in the context of the KH transformation. The theory presented here is an
extension to quantum mechanics of classical stabilization, but its validity is not confined to
the semiclassical regime. In particular, the lowest resonance was calculated with the help of
an effective static potential. It is argued that a rapidly oscillating smooth potential that decays
exponentially or faster at infinity typically exhibits a low energy resonance in one dimension.
We emphasize that the effective potential resulting from the rapidly oscillating field is small
for high frequencies, resulting in lifetimes that may be short. Nevertheless, as was argued
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here, even for arbitrarily high frequency, the particle is temporarily trapped in a resonance
state.
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